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Abstract— We show that for any fixed prime q ≥ 5 and
constant ζ > 0, it is NP-hard to distinguish whether a two
prover one round game with q6 answers has value at least
1 − ζ or at most 4

q
. The result is obtained by combining

two techniques: (i) An Inner PCP based on the point versus
subspace test for linear functions. The test is analyzed Fourier
analytically. (ii) The Outer/Inner PCP composition that relies
on a certain sub-code covering property for Hadamard codes.
This is a new and essentially black-box method to translate
a codeword test for Hadamard codes to a consistency test,
leading to a full PCP construction.

As an application, we show that unless NP has quasi-
polynomial time deterministic algorithms, the Quadratic
Programming Problem is inapproximable within factor
(log n)1/6−o(1).

1. INTRODUCTION

It is well-known that for many NP-hard problems,

even computing approximate solutions is computation-

ally hard. A hard instance of 2-Prover-1-Round Game

is a starting point for many of the inapproximability

results and constructions of probabilistically checkable

proofs (PCPs), e.g. [1], [6], [11], [12]. A 2P1R Game

(see Definition 2.1) has a parameter R that denotes the

number of different answers each prover may give on a

fixed question. The PCP Theorem [9], [3], [2] combined

with Raz’s Parallel Repetition Theorem [21] gives1:

Theorem 1.1: There exists an absolute constant γ >
0 such that for all large constant R, it is NP-hard to

distinguish whether the value of a 2P1R Game with R
answers is 1 (called completeness parameter) or at most
1
Rγ (called the soundness parameter).

In this paper, we investigate the trade-off between

the number of answers R and the soundness parameter.

Given the central nature of 2P1R Games, we believe

this is a natural pursuit. It is easy to see that if

the completeness is (close to) 1, then the soundness

must be at least Ω( 1
R ), since the provers may give a

random answer and succeed with probability Ω( 1
R ). The

exponent γ in the above theorem is unspecified in Raz’s

paper (and the subsequent works of Holenstein [13] and

Rao [20]) and even if one were to compute it, it would
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1The result holds for games with the projection property. In this
paper, all games considered are projection games. For a projection
game, the number of answers for the two provers may be different;
R denotes the larger of the two numbers.

presumably be very tiny. 2 The main result in this paper

is that the above theorem holds essentially with γ = 1
6 ,

albeit with imperfect completeness.

Theorem 1.2: (Main Theorem) For any fixed prime

q ≥ 5 and constant ζ > 0, it is NP-hard to distinguish

whether a 2P1R Game with R = q6 answers has value

at least 1− ζ or at most 4
q .

The exponent γ does play a role in some inapprox-

imability results. For instance, Arora et al [4] show that

the Quadratic Programming Problem is inapproximable

within factor (log n)γ . This is the problem of maximiz-

ing a quadratic form
∑n
i,j=1 aijxixj over all vectors

‖x‖∞ ≤ 1 and known to be approximable within factor

O(log n) [17], [19], [8] (the diagonal entries of the

quadratic form are assumed to be zero; the problem

becomes rather meaningless otherwise). Using Theorem

1.2 with super-constant setting of parameter q, we obtain

the following result. In fact this application was our

original motivation. The details of the proof of this

theorem are left to the full version of the paper.

Theorem 1.3: Unless NP ⊆ DTIME(2poly(logn)),
no polynomial time algorithm can approximate

the Quadratic Programming Problem within factor

(log n)1/6−o(1).
One technical contribution of the paper, perhaps more

interesting for future research, is an essentially black-

box method to translate a codeword test for Hadamard

code (i.e. a linearity test) to a consistency test, leading

to a full PCP construction. We state this as informal

Theorem 1.4 at the end of this section.

1.1. Overview of Proofs and Techniques

We prove Theorem 1.2 by constructing a PCP (for

an NP-complete language) that makes two queries to a

proof: one query reads a symbol over an alphabet of

size q and the other reads a symbol over an alphabet of

size q6. The PCP has completeness 1−ζ and soundness

at most 4
q . As is standard in the PCP literature, the PCP

is obtained by composing the so-called Outer PCP and

Inner PCP.

2If the value of a game is 1 − α, then the value of the k-wise
repeated game is at most (1 − αp)ck for some absolute constants c
and p. We have improvements p = 32, 3 and for projection games
p = 2 from [21], [13], [20] respectively. However, c still remains
unspecified and hence the exponent γ remains unspecified in Theorem
1.1.



Inner PCP: The Inner PCP is essentially a probabilistic

testing procedure that tests whether a given function

f : Fmq �→ Fq satisfies a desired property. Three types of

tests have generally been used depending on the desired

setting of parameters, e.g. the number of queries, type of

the acceptance predicate, completeness and soundness,

size of the proof etc.

• The low degree test [9], [3], [5], [22] that tests

whether f is a polynomial of low degree.

• The linearity test that tests whether f is linear (=

Hadamard codeword) [2], [14].

• The dictatorship test that tests whether f is a

dictatorship, i.e a function of the form f(x) = xi
for some coordinate 1 ≤ i ≤ m, e.g. [6], [11],

[12].

If f satisfies the desired property (i.e. being linear,

low degree, or dictatorship), then the test passes with

probability (close to) 1 and conversely, if the test

passes with reasonable probability, f must have a non-

trivial agreement with another function g that has the

desired property. The low degree test has been analyzed

algebraically [9], [3], [5] and also combinatorially [22]

whereas the linearity and dictatorship tests are often

amenable to Fourier analysis, e.g. [14], [11], [12], [16].

In this paper, we desire an explicit and good trade-off

between the alphabet size of the PCP and the soundness

parameter. At the Inner PCP level, this is achieved

by a linearity test that combines the elements of the

linearity test and the low degree test. Specifically, given

a function f : F
m
q �→ Fq , we wish to test that f

is linear. The standard BLR test [7] checks whether

f(x + y) = f(x) + f(y) for randomly chosen inputs

x and y. We however wish to have a 2-query test and

hence we instead do a point versus subspace test. We

are given the table of values of the function f and in

addition, for every subspace W ⊆ F
m
q of dimension 6,

a linear function T (W ) : W �→ Fq that is supposed

to be the restriction of f on W (denoted f |W ). The

test selects a random 6-dimensional subspace W and

a random point w ∈ W and accepts if and only if

f(w) = T (W )(w). Note that the query f(w) is over

an alphabet of size q and the query T (W ) is over an

alphabet of size q6.

The test is similar to the point versus (affine) line
test [3], [5] and the point versus (affine) plane test

[22]. These tests check whether a function has degree

d where d is small but still super-constant. We are

instead interested in the simplest case, i.e. d = 1.

The tests in [5], [22] have the following soundness

guarantee: if a function passes with probability δ and

q > Ω((dm/ δ)c), then f must have agreement at least

δc
′

with some degree d polynomial for some positive

integers c and c′. We could apply their analysis to

the special case d = 1. However we are interested in

the explicit values of c and c′ which are not specified

in these papers and moreover we cannot afford the

dependence on m. In principle, the values of c and

c′ may be computed by a rigorous examination of

analysis therein and perhaps the dependence on m
is not necessary. We however skip this arduous task

and instead present a self-contained (and novel in our

opinion) Fourier analysis of the test.

We achieve the following soundness guarantee: if f
passes the point versus subspace test with probability
3
q , then for some j ∈ Fq, j 	= 0, the function j · f
has a Fourier coefficient with magnitude at least 1

q2

(see Lemma 4.4). Interestingly, the test is analyzed by

looking at the probability that f (and its restriction f |W )

passes the Gowers Test f(x)− f(y)− f(z) + f(−x+
y + z) = 0 for randomly chosen x, y, z. The Gowers

Test is considered for the purposes of the analysis only

and is not a part of the actual test. The probability of

passing the Gowers Test is related to the existence of a

large Fourier coefficient (see Lemma 4.3) for function

j · f for some j 	= 0.

The analysis proceeds as follows: assume that f
passes the point versus subspace test with probability
1
q + δ where δ = 2

q . For the sake of simplicity,

assume that for every subspace W , the test passes with

probability 1
q + δ after selecting W . Thus f |W has

agreement 1
q + δ with a linear function T (W ). We

show that this implies j · f |W has a large Fourier

coefficient for some j 	= 0 and hence f |W passes the

Gowers Test with probability 1
q+δ

4. We observe that the

probability that f passes the Gowers Test is the average

(over W ) of the probability that f |W passes the Gowers

Test, up to an additive difference of e = 3
q4 . This

implies that f passes the Gowers Test with probability
1
q + δ4 − e ≥ 1

q +
2
q4 . From this we conclude that for

some j 	= 0, j · f has a large Fourier coefficient, with

magnitude at least 1
q2 .

Thus the Gowers Test serves as a vehicle to pass

from the local linearity of f to its global linearity. This

is also reminiscent of the bootstrapping method that

allows the analysis of the low degree test in two (or

three) dimensions to carry over to a higher number of

dimensions.

Remark: It is not clear that we necessarily need a

point versus �-dimensional subspace test with � = 6
to achieve a soundness of O( 1q ). Here is the limitation

of our current analysis. In the Gowers Test on f |W ,

dim(W ) = �, the inputs x, y, z are linearly dependent

with probability Θ( 1
q�−2 ). On the other hand, when the

Gowers Test is applied to the function f , the inputs

x, y, z are linearly dependent with probability Θ( 1
qm−2 )

which is negligible. Hence we are able to claim that

the probability that f passes the Gowers Test is the



average (over W ) of the probability that f |W passes the

Gowers Test, but only up to an additive difference of

e = Θ( 1
q�−2 ). As the above calculation shows, we desire

that δ = O( 1q ) and that δ4 dominates e = Θ( 1
q�−2 ),

which forces us to have � ≥ 6.

With a more careful (or different, perhaps algebraic

or combinatorial along the lines of [5], [22]) analysis, it

might be enough to have the point versus 2-dimensional
subspace (or the point versus affine line) test. If so,

this would give a PCP with q2 answers and soundness

O( 1q ). We do not consider this as the current focus

of our paper and hence do not attempt it. Our focus

is to demonstrate that it is possible to get an explicit

and good trade-off between the answer size and the

soundness parameter and present the Outer/Inner PCP

composition based on the sub-code covering property

(see below). Constructing a PCP with qt answers with

1 < t < 2 and soundness O( 1q ) however seems much

more challenging, if possible at all, and might require

an entirely new approach. We note that Moshkovitz and

Raz [18] do provide an analysis of the point versus 2-
dimensional subspace test (Theorem 19 therein), in a

rather similar way as ours, albeit using the BLR Test as

an intermediate vehicle instead of the Gowers Test. The

soundness they achieve is O( 1
q1/6

), which would give

exponent γ = 1
12 in the trade-off between the alphabet

size and the soundness of the test.

Outer PCP, Composed PCP and Sub-Code Covering
Property: The linearity testing primitive at the Inner

PCP level dictates that we use an Outer PCP based on

a NP-hard problem with linear constraints. A natural

choice is the 3LIN problem over Fq: we are given an

instance (X,Φ) where X is a set of variables taking

values in Fq and Φ is a set of linear equations, each

equation depending on three variables from X . The goal

is to find an assignment σ : X �→ Φ that satisfies a

good fraction of the equations. A celebrated result of

Håstad [12] shows that for any constant η > 0, it is NP-

hard to distinguish whether an instance (X,Φ) has an

assignment that satisfies 1− η fraction of the equations

(YES Case) or any assignment satisfies at most 1
q + η

fraction of the equations (NO Case).

Starting with the hard instance of 3LIN as above,

one builds a 2P1R Game as follows: the first prover

is sent a set of k equations at random from Φ. Let V
denote the set of 3k variables sent to the first prover.

The second prover is sent a set U ⊆ V that includes

independently for 1 ≤ i ≤ k, all three variables in the

ith equation with probability 1− β and exactly one of

the three variables in the ith equation with probability
β
3 each (β will be tiny as explained later). The provers

answer with assignments to V and U respectively and

the verifier accepts if and only if the assignments are

consistent on U and moreover all equations on V are

satisfied. In the YES Case, the provers have a strategy to

make the verifier accept with probability at least 1−kη
whereas in the NO Case, any prover strategy makes the

verifier accept with probability at most 2−Ω(βk) (see

Section 3 for a proof).

The 2P1R Game described is precisely the so-called

Outer PCP. The composition of the Outer and Inner

PCP amounts to constructing a verifier that behaves as

follows: the PCP verifier expects, for each question V
(U resp.) to the first (second resp.) prover, a Hadamard

encoding of assignment to V (U resp.). The Hadamard

code is same as the table of values of a linear function

fV : FVq �→ Fq (gU : FUq �→ Fq resp.) defined by an

assignment to V (U resp.). Moreover, for every V , a

table of linear functions on all 6-dimensional subspaces

of F
V
q is expected; these linear functions are supposed

to be the restrictions of the global linear function on

F
V
q . The verifier now picks a random question V to the

first prover and performs the point versus subspace test

on the table fV and the corresponding subspaces table.

Note that it appears as if the Hadamard codes on U
do not play any role (which would not make sense).

We observe that the Hadamard code on U is actually

contained in the Hadamard code on V (as a sub-code).

This is because F
U
q ⊆ F

V
q where we append a vector

in F
U
q with zeroes at positions in V \ U and think of

it as a vector in F
V
q . Thus there is no need to have a

separate Hadamard code on U (though it helps in the

analysis to think of these as virtual tables). Moreover

if U ⊆ V ∩ V ′ for distinct questions V and V ′ to the

first prover, we can identify the positions in Hadamard

codes of V and V ′ that correspond to the same position

in the (virtual) Hadamard code of U .

Now we look carefully at the soundness analysis

of the composed PCP. Assume on the contrary that

the verifier accepts with probability 4
q and for sim-

plicity that for every V , the verifier accepts the point
versus subspace test on the supposed Hadamard code

f : FVq �→ Fq with probability 4
q . The analysis of the

Inner PCP guarantees that for some j 	= 0, j · f has

a large Fourier coefficient. Thus the function f may

be list decoded by making a list of all large Fourier

coefficients. Since the sum of squared magnitudes of all

Fourier coefficients is 1, the list size is bounded. Our

test also incorporates side-conditions (see Section 4.3)

and ensures that the Fourier coefficients obtained as list

decoding satisfy all the equations on V (this is done in

a more explicit manner than the standard folding over
equations trick which seems inapplicable in our setting).

Finally we want to infer consistency between f
(i.e. supposed Hadamard code on V ) and the (virtual)

supposed Hadamard codes gU : FUq �→ Fq on U ⊆ V .

But as observed gU = f |FU
q

. We would like to conclude



that since j · f has a large Fourier coefficient, so do

many of the j · g|U functions. This turns out to be

possible if the sub-code spaces FUq over all choices of U
(weighted according to the distribution on U for a fixed

V ) cover the global space F
V
q almost uniformly. We

term this as the sub-code covering property. When β is

sufficiently small and k is sufficiently large, we note that

|U | ≈ (1− 2
3β)|V |; thus the size of a typical sub-code

space is q−O(βk) = 2−O(β log q·k) relative to the size of

the code, there are roughly
(
k
βk

)
· 3βk = 2Ω(β log(1/β)·k)

choices of U , and it is not unreasonable to expect that

the covering property holds provided log(1/β)� log q.

We formally prove this as Lemma 3.1.

Once we are able to infer the consistency of tables

f = fV and g|U , as usual, the list decoding and then

picking a random Fourier coefficient in the list yields

a provers’ strategy in the 2P1R Game. This yields a

contradiction provided the soundness 2−Ω(βk) of the

2P1R Game is low enough, which follows if βk is large

enough.

The Codeword Test and the Consistency Test: In the

PCP literature, the low degree test, linearity test and

the dictatorship test at the Inner PCP level are often

referred to as the codeword test and then the Inner/Outer

PCP composition amounts to extending the test to the

consistency test between two (or more as is necessary in

some PCPs) supposed codewords, e.g. f |V and g|U as

above. Often this composition presents serious technical

challenges and one needs to carefully analyze each PCP

construction by itself. Our paper shows how to translate

the codeword test for Hadamard code (i.e. the linearity

test), essentially in a black-box manner, to a consistency

test. In fact the tables g|U are virtual and there is

no separate consistency test. As described above, the

codeword test for functions f |V automatically serves as

a consistency test between f |V and g|U , since the entries

in tables f |V and f |V ′ that correspond to the virtual

table g|U with U ⊆ V ∩ V ′ are identified together. We

state this observation as an informal theorem3:

Theorem 1.4: (Informal) Suppose there is a linearity

test for functions f : Fmq �→ Fq with perfect complete-

ness such that every function whose all Fourier coeffi-

cients are o(1) in magnitude is accepted with probability

at most s. Then the test can be translated to a PCP

with the same predicate, almost perfect completeness

and soundness at most s+ o(1).

2. PRELIMINARIES

In this section, we briefly describe preliminary back-

ground and the tools used in this paper.

3We remark that a similar informal theorem also holds for the
dictatorship test modulo the Unique Games Conjecture, with the
notion of Fourier coefficients replaced by influences of co-ordinates.

2.1. 2 Prover 1 Round Games

Definition 2.1: A 2P1R Game

G(V,U , μ,R,S, {πV U}) consists of sets of questions

V,U and sets of answers R,S for the two provers

respectively, a distribution μ on the set of question

pairs V × U and for every question pair (V,U) in the

support of μ, a predicate πV U : R × S �→ {0, 1} that

defines the pairs of accepting answers. A strategy of

provers is a map φ : V �→ R, φ : U �→ S . The value of

the strategy φ is:

val(φ,G) := Pr(V,U)∼μ [πV U (φ(V ), φ(U)) = 1] .

The value of the game val(G) is the maximum value of

any prover strategy. A Projection Game is one where

for every answer of the first prover, there is exactly one

accepting answer of the second prover. For a projection

game, the predicate πV U can be thought of as a map

πV U : R �→ S and the accepting answers are of the

form (r, πV U (r)) for r ∈ R. For a projection game,

|S| ≤ |R|.
A 2P1R Game is best viewed as a game between the

two provers and a verifier. The verifier picks a random

question pair (V,U) from the distribution μ, asks one

question each to the two prover respectively, and accepts

if and only if the provers’ answers satisfy the predicate

πV U . The probability of acceptance of the verifier is

same as the value of a provers’ strategy.

Definition 2.2: Given a 2P1R Game

G(V,U , μ,R,S, {πV U}), the k-wise repeated game is

G⊗k(Vk,Uk, μk,Rk,Sk, {πkV ′U ′}),
where for V ′ = (V1, . . . , Vk) and U ′ = (U1, . . . , Uk),
πkV ′U ′ := ∧ki=1πViUi

.
We state below Raz’s Parallel Repetition Theorem

along with the recent improvements (and simplifica-

tions) by Holenstein and Rao.

Theorem 2.3: ([21], [13], [20]) There exists an abso-

lute constant c > 0 such that for a 2P1R Game G with

val(G) = 1− ε,
val(Gk) ≤ (1− ε3)ck.

For a Projection Game, the bound of (1− ε2)ck holds.

2.2. Hardness of 3LIN

Our reduction is from the 3LIN problem over a finite

field. For the proof of Theorem 1.2, we use Håstad’s

well-known hardness result for 3LIN [12]. For the proof

of Theorem 1.3, we need a hardness result for 3LIN with

very good completeness and we use a result of Khot and

Ponnuswami [15]. The details of the latter proof are left

to the full version of the paper.

Definition 2.4: For a prime q, an instance (X,Φ) of

3LIN consists of a set of variables X over Fq and a

set of linear constraints Φ such that each constraint



depends on exactly three variables. Let OPT(X,Φ)
denote the maximum fraction of constraints satisfied by

any assignment.

Theorem 2.5: ([12]) For every constant η > 0 and a

prime q, it is NP-hard to distinguish whether a 3LIN

instance (X,Φ) over Fq has OPT(X,Φ) ≥ 1 − η or

OPT(X,Φ) ≤ 1
q + η.

2.3. Hadamard Code and Fourier Analysis

Let q be a prime, ω := e2πi/q be the complex qth

root of unity and Ω := {1, ω, . . . , ωq−1}.
Definition 2.6: Hadamard Code of α ∈ F

n
q is defined

as the table of values of the linear function χα : F
n
q �→ Ω

where

∀x ∈ F
n
q , χα(x) = ωα·x.

The vector space of all functions f : Fnq �→ C has

an orthonormal basis {χα | α ∈ F
n
q } where the inner

product between two functions f, g : Fnq �→ C is defined

as

〈f, g〉 := Ex

[
f(x)g(x)

]
.

Hence, every f : Fnq �→ C can be expressed uniquely as

f =
∑
α∈Fn

q

f̂(α) χα.

The coefficients f̂(α) ∈ C are called Fourier coeffi-

cients. These are defined by:

f̂(α) = 〈f, χα〉 = Ex

[
f(x)χα(x)

]
.

By Parseval’s identity,
∑
α |f̂(α)|2 = ‖f‖22 =

Ex[|f(x)|2]. In particular, for a function taking values in

Ω, the sum of squared absolute values of all its Fourier

coefficients equals 1.

2.4. Quadratic Programming Problem

Definition 2.7: Given a real symmetric matrix A =
{aij}ni=1 with zero diagonal entries, the Quadratic Pro-

gramming Problem seeks to maximize
∑n
i,j=1 aijxixj

where ∀i, xi ∈ [−1, 1]. Let OPT(A) denote the max-

imum (which is non-negative since {∀i, xi = 0} is a

feasible solution).

Theorem 1.3 is proved using the same PCP used to

prove Theorem 1.2, but with super-constant value of

q and then reducing the hard instance of 2P1R Game

to the Quadratic Programming Problem via Arora et

al’s reduction [4] below. The details are left to the full

version of the paper.

Theorem 2.8: ([4]) There is a reduction from a Pro-

jection Game G(V,U , μ,R,S, {πV U}) to a Quadratic

Programming Problem instance A such that

• The reduction runs in time polynomial in the size

of G and 2|R|.
• OPT(A) = val(G).

2.5. Hellinger and Statistical Distance

The squared Hellinger distance between distributions

D1 and D2 over a discrete probability space A is

H2(D1, D2) :=
1

2

∑
a∈A

(√
D1(a)−

√
D2(a)

)2

= 1−
∑
a∈A

√
D1(a)D2(a).

It is clear that 1−H2(·, ·) is multiplicative for product

distributions Dk
1 , D

k
2 on space Ak, i.e.

1−H2(Dk
1 , D

k
2 ) = (1−H2(D1, D2))

k.

The statistical distance between D1 and D2 is:

Δ(D1, D2) :=
1

2

∑
a∈A

|D1(a)−D2(a)| .

We have the standard inequality:

Lemma 2.9:

H2(D1, D2) ≤ Δ(D1, D2) ≤
√
2 ·H(D1, D2).

3. THE OUTER PCP

In this section, we describe our Outer PCP. For the

ease of exposition, we do it in three stages, starting

with the standard variable versus equation game. We

also prove the sub-code covering property. Let (X,Φ)
be an instance of the 3LIN problem over Fq given by

Theorem 2.5.

3.1. The Variable Versus Equation Game

Consider the 2P1R Game where the verifier picks a

random equation E ∈ Φ and then picks one of the three

variables x ∈ E. The first prover is sent the question

E (i.e. the three variables appearing in E) and the

second prover is sent the question x. The provers answer

with the Fq-values of all the variables they receive. The

verifier accepts if and only if the two provers agree on

the variable x and moreover the values given by the first

prover satisfy the equation E. It is well-known and easy

to check that if OPT(X,Φ) = 1− ε, then the value of

the game is 1− ε
3 .

3.2. The Basic 2P1R Game

We now slightly modify the variable versus equation

game and call it the Basic 2P1R Game (think of β as

small):

• The verifier picks an equation E ∈ Φ at random.

Let x, y, z ∈ X be the variables in E.

• The first prover is sent the equation E.

• The second prover is sent the equation E with

probability 1 − β and one of the three variables

x, y, z with probability β
3 each.

• The provers answer with the values of all the

variables they receive.



• The verifier accepts if and only if the two provers

agree on the values of the variables and moreover

the values given by the first prover satisfy the

equation.

Assume that OPT(X,Φ) = 1 − ε. The value of the

game is at least 1 − ε since the provers may stick to

a (1 − ε)-satisfying assignment to (X,Φ) and in that

case, the verifier may reject only when the equation E
is not satisfied.

On the other hand, the value of the game is at most

1 − Ω(εβ) since with probability β, the second prover

receives exactly one variable and the variable versus

equation game is played.

3.3. The Final 2P1R Game (Outer PCP)

The Outer PCP is now obtained as the k-wise repe-

tition applied to the Basic 2P1R Game. Specifically:

• The verifier picks equations E1, . . . , Ek ∈ Φ at

random. Let V denote the set of 3k variables

appearing in these equations.

• The question V is sent to the first prover.

• Let U ⊆ V be chosen by including independently

for each 1 ≤ i ≤ k, all three variables in equation

Ei with probability 1 − β and one of the three

variables in equation Ei with probability β
3 each.

The question U is sent to the second prover.

• The provers answer with the values of all the

variables they receive.

• The verifier accepts if and only if the two provers

agree on the values of the variables in U and

moreover the values given by the first prover satisfy

all the k equations E1, . . . , Ek.

Assume again that OPT(X,Φ) = 1 − ε. The value

of the game is at least 1 − εk since the provers may

stick to a (1 − ε)-satisfying assignment to (X,Φ) and

in that case, the verifier may reject only when at least

one equation Ei is not satisfied.

On the other hand, we observe that the value of the

game is at most (1−Ω(ε2))Ω(βk). As noted before, the

value of the basic game is 1 − Ω(εβ) and if we apply

the parallel repetition theorem (Theorem 2.3) directly,

we end up with an upper bound of (1−Ω(ε2β2))Ω(k).

This bound is not good enough for us and we get

the better bound as follows. Call a coordinate useful

if the second prover receives a single variable, i.e. the

standard variable versus equation game is played. The

expected number of useful coordinates is βk. Hence the

probability that less than βk/2 coordinates are useful

is at most 2−Ω(βk) and may be ignored in comparison

to the desired bound. The repeated game restricted to

the question pairs where at least βk/2 coordinates are

useful can be thought of as a convex combination of

sub-games, each sub-game being the standard variable

versus equation game repeated at least βk/2 times. Each

such sub-game has value at most (1−Ω(ε2))Ω(βk) and

hence so does the overall repeated game.

3.4. Sub-Code Covering Property

Fix a question (E1, . . . , Ek) to the first prover in

the Outer PCP and let V denote the set of variables

{x1, . . . , x3k} in these equations. The question to the

second prover is a subset U ⊆ V where indepen-

dently for each 1 ≤ i ≤ k, all three variables

x3(i−1)+1, x3(i−1)+2, x3i are included in U with prob-

ability 1 − β and exactly one of the three variables

is included with probability β
3 each. Consider two

distributions on F
V
q = F

3k
q :

• Distribution D is uniform on F
V
q .

• Distribution D′ is obtained by picking a random

question U ⊆ V to the second prover (as described

above), picking a string in F
U
q uniformly at ran-

dom, and then “pulling up” this string to F
V
q by

inserting 0 at positions in V \ U .

Lemma 3.1: The statistical distance Δ(D,D′) is up-

per bounded by O(
√
k · qβ).

Proof: We will bound the squared Hellinger dis-

tance on one coordinate, then use the multiplicativity of

the squared Hellinger distance for product distribution,

and then upper bound the statistical distance in terms

of the Hellinger distance.

Let Q denote the uninform distribution on Fq and

(Q,Q,Q) denote its three independent copies. On any

single coordinate 1 ≤ j ≤ k, note that Dj is same as

the distribution (Q,Q,Q) whereas D′j can be written

as:

D′j = (1− β) · (Q,Q,Q) + β

3
· (Q, 0, 0)

+
β

3
· (0,Q, 0) + β

3
· (0, 0,Q).

The total probability mass attached by Dj to triples in

F
3
q where the number of non-zero entries is three, two,

one, and zero respectively is:

p3 =
(q − 1)3

q3
, p2 =

3(q − 1)2

q3
,

p1 =
3(q − 1)

q3
, p0 =

1

q3
.

Similarly, the total probability mass attached by D′j to

triples in F
3
q where the number of non-zero entries is

three, two, one, and zero respectively is:

p′3 = (1− β) (q − 1)3

q3
, p′2 = (1− β)3(q − 1)2

q3
,

p′1 = (1−β)3(q − 1)

q3
+β

q − 1

q
, p′0 = (1−β) 1

q3
+β

1

q
.

Hence

1−H2(Dj ,D′j) =
√
p3p′3+

√
p2p′2+

√
p1p′1+

√
p0p′0



=

(
(q − 1)3

q3
+
3(q − 1)2

q3

)√
1− β+

3(q − 1)

q3

√
1 + (

q2

3
− 1)β +

1

q3

√
1 + (q2 − 1)β

≥ 1−O(β2q2),

where we used
√
1 + x ≥ 1+x

2−x2 for x ∈ [− 1
2 ,

1
2 ] and

q2β � 1
2 (as will be the case). The point to note is that

in the above expression the term linear in β vanishes.

By multiplicativity of the squared Hellinger distance,

we have

1−H2(D,D′) = (1−H2(Dj ,D′j))k

≥ (1−O(β2q2))k ≥ 1−O(β2q2k).

Finally Δ(D,D′) ≤
√
2 ·H(D,D′) ≤ O(

√
k · qβ).

3.5. The Choice of Parameters

Let OPT(X,Φ) = 1 − ε where (X,Φ) is a 3LIN

NO instance given by Theorem 2.5. In Theorem 2.5,

OPT(X,Φ) is close to 1
q and hence ε = Ω(1). The

parameters will be chosen so that for a large enough

constant C,

• The soundness of the Outer PCP, which is at most

(1− Ω(ε2))−Ω(βk), is at most 1
qC

.

• Δ(D,D′) ≤ 1
Cq2 .

Using Lemma 3.1, it suffices to choose k =
C3
∗q

6 log2 q
ε4

and β = ε2

C2∗ ·q6·log q for a large enough constant C∗.

4. THE INNER PCP

In this section, we describe our Inner PCP. We first

analyze a test that we call Gowers Test, which is then

used to analyze the actual Inner PCP presented in

Section 4.3. We begin with some notation and a simple

lemma.

Let ω := e2πi/q be the complex qth root of unity

and Ω := {1, ω, . . . , ωq−1}. For f, g : F
m
q �→ Ω,

let AGR(f, g) denote the agreement between the two

functions, i.e. the fraction of points on which they agree.

Let fi denote the function fi(x) := f(x)i. Note that for

z ∈ Ω, the expression (1+z+z2+ . . .+zq−1)/q equals

1 if z = 1 and 0 otherwise.

Lemma 4.1: If f : Fmq �→ Ω is a function such that

for some linear function χα, AGR(f, χα) ≥ 1
q + δ.

Then
∑q−1
j=1

∣∣∣f̂j(jα)∣∣∣ ≥ qδ.

Proof: The lemma follows by noting that:

AGR(f, χα) = Ex

⎡
⎣1
q

q−1∑
j=0

(f(x)χα(x))
j

⎤
⎦

=
1

q
+
1

q

q−1∑
j=1

Ex

[
fj(x)χjα(x)

]

=
1

q
+
1

q

q−1∑
j=1

f̂j(jα).

4.1. The Gowers Test

For a function f : Fmq �→ C, the Gowers Uniformity

Norm U2 [10] is defined as

‖U2(f)‖4 := Ex,y,z

[
f(x)f(x+ y)f(x+ z)f(x+ y + z)

]
.

We will study the probability that a function f : Fmq �→
Ω passes the test

f(x)f(x+ y)f(x+ z)f(x+ y + z) = 1,

for a random choice of x, y, z. It is thus natural to name

the test as the Gowers Test. It will be more convenient

for us to think of the test equivalently as

Gowers Test : f(x)f(y)f(z)f(−x+ y + z) = 1.

Lemma 4.2: Let f : Fmq �→ Ω be a function. Then

the acceptance probability of the Gowers Test is:

Prx,y,z

[
f(x)f(y)f(z)f(−x+ y + z) = 1

]

=
1

q
+
1

q

q−1∑
j=1

∑
α

∣∣∣f̂j(jα)∣∣∣4 .
Proof: The acceptance probability can be expressed

as

1

q
+
1

q

q−1∑
j=1

E

[
(f(x)f(y)f(z)f(−x+ y + z))j

]

=
1

q
+
1

q

q−1∑
j=1

∑
α,φ,ψ,γ

f̂j(α)f̂j(φ)f̂j(ψ)f̂j(γ) ·

E [χα−γ(x)χ−φ+γ(y)χ−ψ+γ(z)]

=
1

q
+
1

q

q−1∑
j=1

∑
α

∣∣∣f̂j(α)∣∣∣4 ,
noting that the expectation vanishes unless α = φ =
ψ = γ. We can replace α by jα without changing the

summation.



4.2. The Gowers Test with Side Conditions
At the Inner PCP level, we need to check not only

that a function f is linear, i.e. f = χα for some α,

but also that α itself satisfies a given set of linear con-

straints. We call these as side conditions and modify the

Gowers Test so as to incorporate these side conditions

(and henceforth Gowers Test refers to one with side

conditions incorporated).

Given:
• A function f : Fmq �→ Ω.

• Side conditions hi ·x = bi, i = 1, . . . , k where hi ∈
F
m
q , bi ∈ Fq . Assume that {hi}ki=1 are linearly

independent and H be their linear span.

The Test:
• Pick x, y, z ∈ F

m
q at random.

• Pick a = (a1, . . . , ak) ∈ F
k
q at random and let

h =
∑k
i=1 aihi and a · b := ∑k

i=1 aibi.
• Accept if and only if

f(x)f(y)f(z)f(−x+ y + z + h) = ωa·b.

Lemma 4.3: The following hold:

1) The Gowers Test always passes with probability

at least 1
q .

2) If the Gowers Test passes with probability at least
1
q+δ, then there exists 1 ≤ j ≤ q−1 and α ∈ F

m
q

that respects the side conditions (i.e. ∀i, α · hi =
bi) and |f̂j(jα)| ≥

√
δ.

3) If f has agreement 1
q + δ with a linear function

χα that respects the side conditions (i.e. ∀i, α ·
hi = bi), then f passes the Gowers Test with

probability at least 1
q + δ4.

Proof: The acceptance probability of the Gowers

Test with side conditions is:

1

q
+
1

q

q−1∑
j=1

E

[
(f(x)f(y)f(z)f(−x+ y + z + h))j ·

ω−ja·b
]

=
1

q
+
1

q

q−1∑
j=1

∑
α,φ,ψ,γ

f̂j(α)f̂j(φ)f̂j(ψ)f̂j(γ) ·

E [χα−γ(x)χ−φ+γ(y)χ−ψ+γ(z)]Ea
[
χγ(h)ω

−ja·b]
=

1

q
+
1

q

q−1∑
j=1

∑
α

∣∣∣f̂j(α)∣∣∣4 · Ea [ω∑k
i=1 ai(α·hi−jbi)

]

=
1

q
+
1

q

q−1∑
j=1

∑
α|∀i,α·hi=jbi

∣∣∣f̂j(α)∣∣∣4

=
1

q
+
1

q

q−1∑
j=1

∑
α|∀i,α·hi=bi

∣∣∣f̂j(jα)∣∣∣4 .

The first two conclusions follow immediately. The third

follows in conjunction with Lemma 4.1.

4.3. The Point-Subspace Test with Side Conditions (In-
ner PCP)

Given:

• A function f : Fnq �→ Ω.

• Side conditions hi · x = bi, i = 1, . . . , k. Assume

that {hi}ki=1 are linearly independent and H be

their linear span.

• A table {T (W ) | W ∈ C} where C denotes the

class of k + 6 dimensional subspaces of the form

W = D ⊕ H for a 6-dimensional subspace D of

F
n
q such that D ∩ H = {0}. The entry T (W ) is

a linear function χ : W �→ Ω that respects the

side conditions, i.e. χ(x + y) = χ(x) · χ(y) and

χ(x+ hi) = χ(x) · ωbi ∀x, y ∈W, i = 1, . . . , k.

The Test:

1) Pick a random W ∈ C and T (W ) be the linear

function on W .

2) Pick a random w ∈W .

3) Accept if and only if f(w) = T (W )(w).

4.3.1. Completeness: Suppose f : F
n
q �→ Ω is

linear that respects the side conditions, i.e. f(x+ y) =
f(x) · f(y) and f(x+ hi) = f(x) · ωbi ∀x, y ∈ F

n
q , i =

1, . . . , k. Then letting T (W ) to be the restriction f |W ,

the point-subspace test passes with probability 1.

4.3.2. Soundness:
Lemma 4.4: If the point-subspace test passes with

probability 3
q then there exists 1 ≤ j ≤ q−1 and α ∈ F

n
q

that respects the side conditions (i.e. ∀i, α ·hi = bi) and

|f̂j(jα)| ≥ 1
q2 .

Proof: Assume that the point-subspace test passes

with probability 1
q + δ where δ = 2

q . This means that:

EW [AGR (f |W , T (W ))] =
1

q
+ δ.

By Lemma 4.3(1,3), we conclude that

EW [Pr [f |W passes Gowers Test]] ≥ 1

q
+ δ4. (1)

Now let us consider the probability that f passes the

Gowers Test. The Gowers Test picks three points x, y, z
independently (from the global space F

n
q ). Let ⊥ be the

event that span(x, y, z,H) has dimension k+3 and let

Γ be the set of all such triples (x, y, z). Conditional

on ⊥ happening, the Gowers Test picks a triple in Γ
uniformly at random. An alternate way of picking a

triple in Γ uniformly at random is to pick a subspace

W ∈ C and then pick (x, y, z) ∈ W 3 conditional on

the event that span(x, y, z,H) has dimension k+3. Let

⊥(W ) be the event that span(x, y, z,H) has dimension



k + 3 when x, y, z ∈W are picked at random. Thus:

Pr [f passes Gowers Test | ⊥]
= EW [Pr [f |W passes Gowers Test | ⊥(W )]]

≥ EW [Pr [f |W passes Gowers Test]− Pr[¬⊥(W )]]

≥ EW [Pr [f |W passes Gowers Test]]− 3

q4

≥ 1

q
+ δ4 − 3

q4
≥ 1

q
+

2

q4
,

where we used Pr[¬⊥(W )] ≤ 3
q4 and δ = 2

q . Also,

noting that Pr[⊥] ≥ 1− 3
qn−k−2 , we get that

Pr [f passes Gowers Test] ≥ 1

q
+

1

q4
.

It follows now from Lemma 4.3(2) that there exists 1 ≤
j ≤ q−1 and α such that ∀i, α ·hi = bi and |f̂j(jα)| ≥
1
q2 .

5. THE COMPOSED PCP

We now describe the composed PCP and prove The-

orem 1.2. The Outer PCP is constructed from a 3LIN

instance (X,Φ) as described in Section 3. The 3LIN

instance is either (1− η)-satisfiable or at most (1− ε)-
satisfiable as per Theorem 2.5. The various parameters

are chosen as in Section 3.5.

The verifier in the composed PCP expects the proof

to contain, for every question V to the first prover, two

tables LV and TV .

The tables LV : The table LV gives the Hadamard code

of the assignment to V . Concretely, let {x1, . . . , x3k}
be the variables in V and σ : X �→ Fq be the global

assignment that is supposed to be an almost satisfying

assignment to (X,Φ). The verifier expects, for the

question V , the table of values of the linear function

LV : FVq = F
3k
q �→ Ω where

LV (y) = ω
∑3k

i=1 yiσ(xi).

Note that for every question U to the second prover,

a table LU that gives the Hadamard code of the as-

signment to U may be expected as well. However if

U ⊆ V , then the table LU is contained in the table LV .

Specifically, for any z ∈ F
U
q , let z↑ denote the vector

obtained by extending z to a vector in F
V
q be inserting

zeroes at the positions in V \ U . Then

LU (z) = ω
∑

i:xi∈U ziσ(xi) = ω
∑3k

i=1 z
↑
i σ(xi) = LV (z↑).

Thus there is no need to have separate LU tables; we

do however think of these as virtual tables. Whenever

there are questions V, V ′ to the first prover such that

U ⊆ V ∩ V ′, the table LU is contained in both the

tables LV and LV ′ . We identify the locations in these

two tables that correspond to the same location in the

(virtual) LU table.

The tables TV : Let V be a question to the first

prover that consists of equations (i.e. side conditions)

{hi ·x = bi}ki=1, the ith equation depending only on the

variables (x3(i−1)+1, x3(i−1)+2, x3i). Thus the vectors

hi are linearly independent and let H be their linear

span. The table TV contains, for every k+6 dimensional

subspace W ⊆ F
V
q such that H ⊆W , a linear function

TV (W ) :W �→ Ω that respects the side conditions.

The PCP Verifier: The verifier picks a random question

V to the first prover in the Outer PCP. Let {hi · x =
bi}ki=1 be the side conditions and H be the linear span

of vectors {hi}ki=1. Let LV : FVq �→ Ω and TV be the

associated tables. The verifier picks a random k + 6
dimensional subspace W , H ⊆W ⊆ F

V
q , and a random

point w ∈W . The verifier accepts if and only if

LV (w) = TV (W )(w).

5.1. Completeness
Let σ : X �→ Fq be a global assignment that

satisfies 1−η fraction of equations. The table LV is the

Hadamard code (i.e. linear function) of the assignment

σ restricted to V . The table TV gives, for every subspace

W , the linear function TV (W ) = LV |W . The test may

fail only when there is some equation in V that is not

satisfied by σ. This happens with probability at most

ηk.

5.2. Soundness
Assume on the contrary that the test accepts with

probability 4
q . By an averaging argument, for at least

1
2q fraction of the questions V , the test accepts with

probability at least 3
q . Fix any such good V . By the

analysis of the Inner PCP, Lemma 4.4, it follows that

there exists 1 ≤ j ≤ q− 1 such that for f := LV , there

is a Fourier coefficient |f̂j(jα)| ≥ 1
q2 and α respects the

side conditions. Note that for the uniform distribution

D on F
V
q ,

f̂j(jα) = Ex∈D
[
fj(x)χjα(x)

]
.

By the sub-code covering property, Section 3.5, it

follows that for some error parameter e, |e| ≤ 1
Cq2 ,

f̂j(jα) = Ex∈D′
[
fj(x)χjα(x)

]
+ e

= EU

[
Ey∈FU

q

[
fj(y

↑)χjα(y↑)
] ]

+ e

= EU

[
Ey∈FU

q

[
fj |U (y)χjα↓(y)

] ]
+ e

= EU

[
f̂j |U (jα↓)

]
+ e,

where fj |U denotes the restriction of fj to F
U
q ⊆ F

V
q

and α↓ denotes the vector obtaining by dropping coor-

dinates of α in V \ U . It follows that

EU

[ ∣∣∣f̂j |U (jα↓)∣∣∣] ≥ |f̂j(jα)|−|e| ≥ 1

q2
− 1

Cq2
≥ 1

2q2
.



Thus, with probability at least 1
4q2 over the choice of

U (for the fixed good V ; call such (V,U) as a good
pair), |f̂j |U (jα↓)| ≥ 1

4q2 . Note also that f |U = g = LU
which is the supposed (virtual) Hadamard code for an

assignment to U and fj |U = gj .
Now we derive strategies for the provers in the Outer

PCP as follows: the first prover, on receiving a question

V , considers the function f = LV , lists all α such

that for some 1 ≤ j ≤ q − 1, |f̂j(jα)| ≥ 1
q2 and α

respects the side conditions, and then outputs a random

element from the list. The list size is bounded by q5.

The second prover, on receiving a question U , considers

the function g = LU , lists all γ such that for some

1 ≤ j ≤ q − 1, |ĝj(jγ)| ≥ 1
4q2 , and outputs a random

element from the list. The list size is bounded by 16q5.

The analysis above shows that when (V,U) is a good

pair, there are α and α↓ = γ in the lists for V and U
respectively and α respects the side conditions. This and

the bound on the list sizes shows that with probability

at least 1
2q · 1

4q2 · 1
q5 · 1

16q5 , the provers succeed. This is

a contradiction since the soundness of the Outer PCP is

at most 1
qC

for a large constant C as in Section 3.5.
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